Some Correlation Inequalities for Ising Antiferromagnets

David Klein ${ }^{1}$ and Wei-Shih Yang ${ }^{2}$

Received May 1, 1989; revision received July 17, 1989

Abstract

We prove some inequalities for two-point correlations of Ising antiferromagnets and derive inequalities relating correlations of ferromagnets to correlations of antiferromagnets whose interactions and field strengths have equal magnitudes. The proofs are based on the method of duplicate spin variables introduced by J. Percus and used by several authors to derive correlation inequalities for Ising ferromagnets.

KEY WORDS: Antiferromagnet; correlation inequalities; Ising model.

1. INTRODUCTION

Correlation inequalities have played an important role in statistical mechanics, especially as applied to ferromagnetic Hamiltonians. It is the purpose of this paper to apply known techniques to obtain some correlation inequalities for antiferromagnets.

Let $H_{1}(\sigma)$ be a ferromagnetic Hamiltonian for finite volume A in \mathbf{Z}^{d} given by

$$
\begin{equation*}
H_{1}(\sigma)=\sum_{(i, j) \subset A} J_{i j} \sigma_{i} \sigma_{j}+\sum_{\substack{i \in A \\ j \notin A}} J_{i j} \sigma_{i} \bar{\sigma}_{j}-h \sum_{i \in A} \sigma_{i} \tag{1.1}
\end{equation*}
$$

and $H(x)$ a corresponding antiferromagnetic Hamiltonian for Λ given by

$$
\begin{equation*}
H(x)=\sum_{(i, j)=A} K_{i j} x_{i} x_{j}+\sum_{\substack{i \in A \\ j \notin A}} K_{i j} x_{i} \bar{x}_{j}-h \sum_{i \in A} x_{i} \tag{1.2}
\end{equation*}
$$

[^0]where the first sums in (1.1) and (1.2) are over all distinct pairs (i, j) in Λ, $\left\{\bar{x}_{j}\right\}$ and $\left\{\bar{\sigma}_{j}\right\}$ represent boundary configurations, and $K_{i j}=(-1)^{[i|+|j|} J_{i j}$. Here $|i|=\left|\left(i_{1}, i_{2}, \ldots, i_{d}\right)\right|=\left|i_{1}\right|+\cdots+\left|i_{d}\right|$ and $x_{i}, \sigma_{i}= \pm 1$, and $J_{i j} \leqslant 0$. We will consider (1.2) with the change of variable $x_{i}=(-1)^{|i|} s_{i}$ and denote the resulting Hamiltonian by $\mathrm{H}_{2}(s)$, so that
\[

$$
\begin{equation*}
H_{2}(s)=\sum_{(i, j) \subset A} J_{i j} s_{i} s_{j}+\sum_{\substack{i \in A \\ j \neq A}} J_{i j} s_{i} \bar{s}_{j}-\sum_{i \in A} k_{i} s_{i} \tag{1.3}
\end{equation*}
$$

\]

where $k_{i}=(-1)^{|i|} h$. We will denote expectations with respect to the finitevolume Gibbs states corresponding to (1.1) and (1.3) by $\langle\cdot\rangle_{F}$ and $\langle\cdot\rangle_{A}$, respectively; boundary configurations will always be assumed fixed.

In Section 2 we derive Lebowitz-type inequalities ${ }^{(3)}$ which allow the comparison of correlations corresponding to Hamiltonians (1.1) and (1.3). When $h=0$, (1.1) and (1.3) are equal and have equal correlation functions. When $h \neq 0, H_{1}(\sigma)$ has a unique phase for all temperatures, which implies decay properties of truncated correlation functions for $H_{1}(\sigma)$. Our inequalities are valid for all h, even though $h \neq 0$ includes both single- and multiple-phase regions for $H(x)$ (see, for example, ref. 1).

In Section 3 we prove some monotonicity properties for two-point correlations corresponding to (1.3). The method of proof is based on the techniques used by Messager and Miracle-Sole ${ }^{(4)}$ to derive, among other things, monotonicity properties for correlations corresponding to nearest neighbor ferromagnetic interactions. We make some modifications of their methods to accommodate nonnearest neighbor interactions and nonpositive external field $\left\{k_{t}\right\}$. We allow our Hamiltonians to have infinite range, but our inequalities are weaker than those of ref. 4 for the ferromagnetic case. We note that Hegerfeldt ${ }^{(2)}$ generalized some of the monotonicity results in ref. 4 for ferromagnetic correlations, but the methods of ref. 2 do not seem to extend readily to antiferromagnetic interactions.

2. Comparison of Correlations

Let two Ising spin Hamiltonians $H_{a}(\sigma)$ and $H_{b}(s)$ for volume Λ in \mathbf{Z}^{d} be given by

$$
\begin{align*}
& H_{a}(\sigma)=\sum_{(i, j) \subset A} J_{i j} \sigma_{i} \sigma_{J}-\sum_{i \in A} h_{i} \sigma_{i} \tag{2.1}\\
& H_{b}(s)=\sum_{(i, j) \subset A} J_{i j} s_{i} s_{j}-\sum_{i \in A} k_{i} s_{i} \tag{2.2}
\end{align*}
$$

where $J_{i j} \leqslant 0$ and $\sigma_{i}, s_{i}= \pm 1$ for all $i, j \in \mathbf{Z}^{d}$. The external field variables h_{i} and k_{i} are of the form

$$
\begin{align*}
& h_{i}=h_{i}^{\prime}-\sum_{j \notin A} J_{i j} \bar{\sigma}_{j} \tag{2.3}\\
& k_{i}=k_{i}^{\prime}-\sum_{j \notin A} J_{i j} \bar{s}_{j} \tag{2.4}
\end{align*}
$$

where $\left\{\bar{\sigma}_{j}\right\}$ and $\left\{\bar{s}_{j}\right\}$ may be interpreted as fixed boundary configurations. Correlation functions, for a finite set B in \mathbf{Z}^{d}, with respect to the finitevolume Gibbs measures for (2.1) and (2.2) will be denoted by $\left\langle\prod_{i \in B} \sigma_{i}\right\rangle \equiv\left\langle\sigma_{B}\right\rangle$ and $\left\langle\prod_{i \in B} s_{i}\right\rangle \equiv\left\langle s_{B}\right\rangle$, respectively.

Let

$$
\begin{equation*}
H_{i}=h_{i}+k_{i}, \quad K_{i}=h_{i}-k_{i} \tag{2.5}
\end{equation*}
$$

Define spin variables q_{i} and t_{i} taking values $-1,0,+1$ by

$$
\begin{equation*}
t_{i}=1 / 2\left(\sigma_{i}+s_{i}\right), \quad q_{i}=1 / 2\left(\sigma_{i}-s_{i}\right) \tag{2.6}
\end{equation*}
$$

Let $\langle\langle\cdot\rangle$ denote expectations with respect to the product measure

$$
\begin{equation*}
\mu(\sigma, s)=\frac{1}{Z_{a}(\Lambda)} \frac{1}{Z_{b}(\Lambda)} \exp \left\{-\beta\left[H_{a}(\sigma)+H_{b}(s)\right]\right\} \tag{2.7}
\end{equation*}
$$

where $Z_{a}(\Lambda)$ and $Z_{b}(\Lambda)$ are the partition functions for $H_{a}(\sigma)$ and $H_{b}(\Lambda)$, respectively. For finite sets A, B in \mathbf{Z}^{d}, let $t_{A}=\prod_{i \in A} t_{i}$ and $s_{B}=\prod_{i \in B} q_{i}$. The following theorem, though not stated in this generality, was proved by Lebowitz ${ }^{(3)}$ (see also Percus ${ }^{(5)}$ and Sylvester ${ }^{(7)}$).

Theorem 2.1. If $H_{i}, K_{i} \geqslant 0$ for all $i \in A$, then for any two subsets A, B in A,
(a) $\left\langle\left\langle t_{A}\right\rangle\right\rangle,\left\langle\left\langle q_{A}\right\rangle\right\rangle \geqslant 0$
(b) $\left.\left\langle\left\langle t_{A} t_{B}\right\rangle\right\rangle \geqslant\left\langle t_{A}\right\rangle\right\rangle\left\langle\left\langle t_{B}\right\rangle\right.$
(c) $\left\langle\left\langle q_{A} q_{B}\right\rangle \geqslant \geqslant\left\langle\left\langle q_{A}\right\rangle\right\rangle\left\langle\left\langle q_{B}\right\rangle\right.\right.$
(d) $\left\langle\left\langle q_{A}\right\rangle\right\rangle\left\langle\left\langle t_{B}\right\rangle \geqslant \geqslant\left\langle q_{A} t_{B}\right\rangle\right\rangle$

Remark 2.1. By symmetry, it may be assumed that $H_{i}, K_{i} \leqslant 0$, in which case inequalities (a)-(d) are modiified by replacing each q_{i} by $-q_{i}$ and each t_{i} by $-t_{i}$.

Corollary 2.1. With the same assumptions as in Theorem 2.1,
(a) $\left\langle\left\langle t_{A}\right\rangle\right.$ decreases and $\left\langle\left\langle q_{A}\right\rangle\right.$ increases as each K_{i} increases
(b) $\left\langle\left\langle t_{A}\right\rangle\right.$ increases and $\left\langle\left\langle q_{A}\right\rangle\right.$ decreases as each H_{i} increases

Proof. This follows by differentiating $\left\langle t_{A}\right\rangle$ and $\left\langle\left\langle q_{A}\right\rangle\right.$ by H_{i} or K_{i} and applying (b), (c), or (d) of Theorem 2.1.

A substantial generalization of part (a) of the following corollary was proved by Lebowitz ${ }^{(8)}$ (see also Griffiths ${ }^{(9)}$).

Corollary 2.2. If $H_{i}, K_{i} \geqslant 0$ for all $i \in A$, then for any subset B in Λ, and any $i, j \in A$,
(a) $\left\langle\sigma_{B}\right\rangle \geqslant\left|\left\langle s_{B}\right\rangle\right|$
(b) $\left\langle\sigma_{i} \sigma_{j}\right\rangle-\left\langle\sigma_{i}\right\rangle\left\langle\sigma_{j}\right\rangle \leqslant\left\langle s_{i} s_{j}\right\rangle-\left\langle s_{i}\right\rangle\left\langle s_{i}\right\rangle$

Proof. The following identities, where σ_{i} and s_{i} may be complex numbers, are well known and easily verified (see, for example, ref. 2):

$$
\begin{align*}
& \prod_{i \in A} \sigma_{i}+\prod_{i \in A} s_{i}=2^{-|A|+1} \sum_{\substack{B \in A \\
|B| \text { even }}} \prod_{i \in B}\left(\sigma_{i}-s_{i}\right) \prod_{i \in A \backslash B}\left(\sigma_{i}+s_{i}\right) \tag{2.8}\\
& \prod_{i \in A} \sigma_{i}-\prod_{i \in A} s_{i}=2^{-|A|+1} \sum_{\substack{B \in A \\
|B| \text { odd }}} \prod_{i \in B}\left(\sigma_{i}-s_{i}\right) \prod_{i \in A \backslash B}\left(\sigma_{i}+s_{i}\right) \tag{2.9}
\end{align*}
$$

where $|A|$ denotes the cardinality of A. Identifying σ_{i} and s_{i} as Ising spin variables yields

$$
\begin{equation*}
\prod_{t \in A} \sigma_{i}-\prod_{i \in A} s_{i}=2 \sum_{\substack{B \in A \\|B| \text { odd }}} q_{B} t_{A \backslash B} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\prod_{i \in A} \sigma_{i}+\prod_{i \in A} s_{i}=2 \sum_{\substack{B \subset A \\|B| \text { even }}} q_{B} t_{A \backslash B} \tag{2.11}
\end{equation*}
$$

Taking $\langle\rangle\rangle$ expectations of (2.10) and (2.11) yields part (a) of the corrollary. The proof of part (b) follows directly from part (d) of Theorem 2.1 with $A=\{i\}$ and $B=\{j\}$. This completes the proof.

We now consider the special case for the Hamiltonians (2.1) and (2.2), where in Eq. (2.3), $h_{i}^{\prime} \equiv h$ for all i and some constant h, and in Eq. (2.4), $k_{i}^{\prime}=(-1)^{|i|} h$. With these identifications $H_{a}(\sigma)$ equals $H_{1}(\sigma)$, given by Eq. (1.1), and $H_{b}(s)$ equals $H_{2}(s)$, given by Eq. (1.3). The following corollary is now an immediate consequence of Corollary 2.2.

Corollary 2.3. Let $h \geqslant 0$. Assume that for all $i \in A$
(a) $h \geqslant 1 / 2 \sum_{j \notin A} J_{i j}\left(\bar{\sigma}_{j}+\bar{s}_{j}\right)$
(b) $\sum_{j \notin A} J_{i j}\left(\bar{\sigma}_{j}-\bar{s}_{j}\right) \leqslant 0$

Then for any subset B of A, and any $i, j \in \Lambda$, the following inequalities for the correlations of the Hamiltonians given by (1.1) and (1.3) hold:
(a) $\left\langle\prod_{i \in B} \sigma_{i}\right\rangle_{F} \geqslant\left|\left\langle\prod_{i \in B} s_{i}\right\rangle_{A}\right|$
(b) $\left\langle\sigma_{i} \sigma_{j}\right\rangle_{F}-\left\langle\sigma_{i}\right\rangle_{F}\left\langle\sigma_{j}\right\rangle_{F} \leqslant\left\langle s_{i} s_{j}\right\rangle_{A}-\left\langle s_{i}\right\rangle_{A}\left\langle s_{j}\right\rangle_{A}$

Remark 2.2. An analogous statement may be made for $h \leqslant 0$ (see Remark 2.1).

Remark 2.3. The hypotheses to Corollary 2.3 are satisfied, for example, if $\bar{\sigma}_{j} \equiv+1$ for all $j \notin \Lambda$. In this case \bar{s}_{j} for $j \notin \Lambda$ may be chosen arbitrarily. It is also easily shown that if $H_{1}(\sigma)$ and $H_{2}(s)$ both have empty or both have periodic boundary conditions, then (a) and (b) of Corollary 2.3 hold.

3. MONOTONICITY PROPERTIES FOR ANTIFERROMAGNETS

In this section we prove some monotonicity properties for two-point correlations for antiferromagnets. Denote by $H(s)$ the Hamiltonian

$$
\begin{equation*}
H(s)=\sum_{A} J_{i j} s_{i} s_{j}-\sum_{i \in A} k_{i} s_{i} \tag{3.1}
\end{equation*}
$$

where here and below Σ_{A} means sum over all distinct pairs (i, j) in the subset A in \mathbf{Z}^{d}. We also assumed that $J_{i j} \leqslant 0$ and that $J_{i j}$ is a function of $\|i-j\|$, the Euclidean norm of $i-j$. The external field k_{i} is given by

$$
\begin{equation*}
k_{i}=k_{i}^{\prime}-\sum_{j \notin \Lambda} J_{i j} \bar{s}_{j} \tag{3.2}
\end{equation*}
$$

for some boundary configuration $\left\{\bar{s}_{j}\right\}$, where $k_{i}^{\prime}=(-1)^{|i|} h$ for some $h \geqslant 0$, so that $H(s)$ is equal to the antiferromagnetic Hamiltonian (1.3). In this section, denote by $\langle\cdot\rangle$ or $\langle\cdot\rangle_{A}$ expectations with respect to the finitevolume Gibbs state determined by (3.1).

Theorem 3.1. Let $\varphi: \mathbf{Z}^{d} \rightarrow \mathbf{Z}^{d}$ by $\varphi\left(i_{1}, \ldots, i_{d}\right)=\left(-\left(i_{1}+2\right), i_{2}, \ldots, i_{d}\right)$. Let A be a rectangle in \mathbf{Z}^{d} invariant under φ and let the boundary configuration $\left\{\bar{s}_{j}\right\}$ be invariant under φ. Suppose also that $\left|J_{i j}\right| \geqslant$ $1 / 2\left|J_{i \varphi(j)}\right|$. Then for any $i, j \in \Lambda$ with $i_{1}, j_{1} \geqslant 0$,

$$
\begin{equation*}
\left\langle s_{i} s_{j}\right\rangle \geqslant\left\langle s_{i} s_{\varphi(j)}\right\rangle \tag{3.3}
\end{equation*}
$$

Remark 3.1. It is also possible to consider periodic boundary conditions. If $0 \in \Lambda$, (3.3) and the symmetry of the finite-volume Gibbs state imply

$$
\begin{equation*}
\left\langle s_{0} s_{j}\right\rangle \geqslant\left\langle s_{0} s_{\left(j_{1}+2, j_{2}, \ldots, j_{d}\right)}\right\rangle \tag{3.4}
\end{equation*}
$$

for $j_{1} \geqslant 0$, where s_{0} is the spin at the origin of \mathbf{Z}^{d}.

Proof. Let

$$
\begin{aligned}
A_{+} & =\left\{i \in A: i_{1}>-1\right\} \\
A_{0} & =\left\{i \in A: i_{1}=-1\right\} \\
A_{-} & =\left\{i \in A: i_{1}<-1\right\}
\end{aligned}
$$

Then $A=\Lambda_{+} \cup A_{0} \cup \Lambda_{-}$and $\varphi\left(\Lambda_{+}\right)=\Lambda_{-}, \varphi\left(\Lambda_{-}\right)=A_{+}$, and $\varphi\left(\Lambda_{0}\right)=\Lambda_{0}$. Denote $\varphi(i)$ by $i \sim$. With this notation we can write

$$
\begin{align*}
\sum_{\Lambda} J_{i j} s_{i} s_{j}= & \sum_{A_{+}} J_{i j}\left(s_{i} s_{j}+s_{i \sim} s_{j \sim}\right)+\sum_{i \in \Lambda_{0}} \sum_{j \in A_{+}} J_{i j}\left(s_{i} s_{j}+s_{i \sim} s_{j \sim}\right) \\
& +1 / 2 \sum_{\Lambda_{0}} J_{i j}\left(s_{i} s_{j}+s_{i \sim} s_{j \sim}\right)+1 / 2 \sum_{\Lambda_{+}} J_{i j \sim}\left(s_{i} s_{j \sim}+s_{i \sim} s_{j}\right) \\
& +1 / 2 \sum_{i \in \Lambda_{+}} J_{i i \sim}\left(s_{i} s_{i \sim}+s_{i} s_{i \sim}\right) \tag{3.5}
\end{align*}
$$

The last two terms on the right side of (3.5) may be rewritten as

$$
\begin{aligned}
& 1 / 2 \sum_{A_{+}} J_{i j \sim}\left(s_{i}+s_{i \sim}\right)\left(s_{j}+s_{j \sim}\right)-1 / 2 \sum_{A_{+}} J_{i j \sim}\left(s_{i} s_{j}+s_{i \sim} s_{j \sim}\right) \\
& \quad+1 / 2 \sum_{i \in A_{+}} J_{i i \sim}\left(s_{i}+s_{i \sim}\right)^{2}-\sum_{i \in A_{+}} J_{i i \sim}
\end{aligned}
$$

Let

$$
\begin{equation*}
t_{i}=1 / 2\left(s_{i}+s_{i \sim}\right) \quad \text { and } \quad q_{i}=1 / 2\left(s_{i}-s_{i \sim}\right) \tag{3.6}
\end{equation*}
$$

so that

$$
\begin{equation*}
s_{i} s_{j}+s_{i \sim} s_{j \sim}=2\left(t_{i} t_{j}+q_{i} q_{j}\right) \tag{3.7}
\end{equation*}
$$

Combining (3.5)-(3.7) and observing that $q_{i}=0$ if $i \in \Lambda_{0}$ gives

$$
\begin{align*}
\sum_{\Lambda} J_{i j} s_{i} s_{j}= & \sum_{\Lambda_{+}}\left(2 J_{i j}-J_{i j \sim}\right) q_{i} q_{j}+\sum_{\Lambda_{+}} 2\left(J_{i j}+J_{i j \sim}\right) t_{i} t_{j} \\
& +2 \sum_{i \in \Lambda_{0}} \sum_{j \in \Lambda_{+}} J_{i j} t_{i} t_{j}+\sum_{\Lambda_{0}} J_{i j} t_{i} t_{j} \\
& +2 \sum_{A_{+}} J_{i i \sim} t_{i}^{2}-\sum_{A_{+}} J_{i i \sim} \tag{3.8}
\end{align*}
$$

Now define $H_{i}=k_{i}+k_{i \sim}$ and $K_{i}=k_{i}-k_{i \sim}$, so that

$$
\begin{equation*}
k_{i} s_{i}+k_{i \sim} s_{i \sim}=H_{i} t_{i}+K_{i} q_{i} \tag{3.9}
\end{equation*}
$$

From the definition of φ and k_{i} and the invariance of the boundary conditions $\left\{s_{j}\right\}$ under φ, it follows that $K_{i}=0$ for all $i \in \Lambda$. Thus, to within an additive constant, $H(s)=H^{1}(q)+H^{2}(t)$, where

$$
\begin{align*}
H^{1}(q)= & \sum_{\Lambda_{+}} N_{i j} q_{i} q_{j} \\
H^{2}(t)= & \sum_{A_{+} \cup A_{0}} M_{i j} t_{i} t_{j}+2 \sum_{i \in A_{+}} J_{i i \sim} t_{i}^{2} \\
& +\sum_{i \in A_{+}} H_{i} t_{i}+1 / 2 \sum_{i \in A_{0}} H_{i} t_{i} \tag{3.10}
\end{align*}
$$

and $N_{i j}$ and $M_{i j}$ are nonpositive.
From the definitions of q_{i} and t_{i} it follows that $t_{i}=0$ iff $q_{i}= \pm 1$ and $q_{i}=0$ iff $t_{i}= \pm 1$. Also, if $i \in \Lambda_{0}$, then $t_{i}= \pm 1$. For any functions $\phi(q)$ and $\psi(t)$,

$$
\begin{equation*}
\langle\phi(q) \psi(t)\rangle=\frac{1}{Z_{A}(s)} \sum_{(q, t)} \phi(q) \psi(i) \exp \left\{-\beta\left[H^{1}(q)+H^{2}(t)\right]\right\} \tag{3.11}
\end{equation*}
$$

where the sum in (3.11) is over all pairs $q=\left\{q_{i}\right\}_{i \in A_{+}}$and $t=\left\{t_{i}\right\}_{i \in A_{+} \cup A_{0}}$ such that $t_{i}= \pm 1$ if $i \in \Lambda_{0}$, and $q_{i}=0$ iff $t_{i}= \pm 1$ otherwise. Equation (3.11) may be rewritten as

$$
\begin{align*}
\langle\phi(q) \psi(t)\rangle= & \frac{1}{Z_{A}(s)} \sum_{q} \sum_{A_{0} \subset A \subset A_{0} \cup A_{+}} \sum_{A^{2}} \phi(q) \chi_{A}(q) \psi(t) \chi_{A^{4}}(t) \\
& \times \exp \left\{-\beta\left[H^{1}(q)+H^{2}(t)\right]\right\} \tag{3.12}
\end{align*}
$$

where the sums on q and t now include the values ± 1 for q_{i} and t_{i}, but not zero, $A^{c}=\left(A_{+} \cup A_{0}\right) \backslash A$, and

$$
\chi_{A}(q)= \begin{cases}1 & \text { when } \quad q_{i}=0 \quad \text { iff } \quad i \in A \\ 0 & \text { otherwise }\end{cases}
$$

For any $A \subset \Lambda_{0} \cup \Lambda_{+}$, let

$$
\begin{align*}
P(A) & =\frac{\sum_{t} \chi_{A^{c}}(t) \exp \left[-\beta H^{2}(t)\right] \sum_{q} \chi_{A}(q) \exp \left[-\beta H^{1}(q)\right]}{Z_{A}(s)} \\
& \equiv \frac{Z_{A}(t) Z_{A^{c}}(q)}{Z_{A}(s)} \tag{3.13}
\end{align*}
$$

where $Z_{A^{c}}(q)$ and $Z_{A}(t)$ are the usual Ising partition functions, respectively, for $H^{1}(q)$ and $H^{2}(t)$ with $q_{i}, t_{i}= \pm 1$. Then (3.12) may be rewritten as

$$
\begin{equation*}
\langle\phi(q) \psi(t)\rangle=\sum_{A_{0} \subseteq A \subset A_{0} \cup A_{+}} P(A)\left\langle\phi(q) \chi_{A}(q)\right\rangle_{A^{c}, q}\left\langle\psi(t) \chi_{A^{c}}(t)\right\rangle_{A, t} \tag{3.14}
\end{equation*}
$$

where

$$
\left\langle\phi(q) \chi_{A}(q)\right\rangle_{A^{c}, q}=Z_{A^{c}}(q)^{-1} \sum_{q} \chi_{A}(q) \phi(q) \exp \left[-\beta H^{1}(q)\right]
$$

and $\left\langle\psi(t) \chi_{A^{c}}(t)\right\rangle_{A, t}$ has an analogous expression. Let $\psi(t) \equiv 1$ and $\phi(q)=q_{i} q_{j}$. Then

$$
\begin{equation*}
\left\langle q_{i} q_{j}\right\rangle=\sum_{A} P(A)\left\langle q_{i} q_{j} \chi_{A}(q)\right\rangle_{\boldsymbol{A}^{c}, q} \geqslant 0 \tag{3.15}
\end{equation*}
$$

since by Griffith's inequality each term in the sum is nonnegative. Thus,

$$
\begin{equation*}
\left\langle s_{i} s_{j}\right\rangle+\left\langle s_{i \sim} s_{j \sim}\right) \geqslant\left\langle s_{i \sim} s_{j}\right\rangle+\left\langle s_{i} s_{j \sim}\right\rangle \tag{3.16}
\end{equation*}
$$

and the conclusion of the theorem now follows from the invariance of A and the boundary conditions under the reflection φ. This completes the proof.

The following corollary, establishing a version of the Percus inequality or the first Lebowitz inequality, follows immediately from the arguments leading up to Eq. (3.14).

Corollary 3.1. With the hypotheses and notation of Theorem 3.1,

$$
\begin{equation*}
\left\langle\prod_{i \in A}\left(s_{i}-s_{\phi(i)}\right\rangle \geqslant 0\right. \tag{3.17}
\end{equation*}
$$

for any A in Λ_{+}.
Theorem 3.2. Let $\Psi: \mathbf{Z}^{d} \rightarrow \mathbf{Z}^{d}$ by $\Psi\left(i_{1}, \ldots, i_{d}\right)=\left(-\left(i_{1}+1\right), i_{2}, \ldots, i_{d}\right)$. Let a rectangle \boldsymbol{A} in \mathbf{Z}^{d} and a boundary condition $\left\{\bar{s}_{j}\right\}_{j \in A^{c}}$ be invariant under Ψ. Then for any $i, j \in \Lambda$ with $i_{1}, j_{1} \geqslant 0$

$$
\begin{equation*}
\left\langle s_{i} s_{j}\right\rangle \geqslant-\left\langle s_{i} s_{\Psi_{(j)}}\right\rangle \tag{3.18}
\end{equation*}
$$

The proof of Theorem 3.2 is similar to and simpler than the proof of Theorem 3.1. In this case $\Lambda_{+}=\{i \in A: i \geqslant 0\}, \Lambda_{-}=\{i \in A: i \leqslant-1\}$, and Λ_{0} is empty. With analogous notation as in the proof of Theorem 3.1, $H_{i} \equiv 0$ and it follows that $\left\langle\prod_{i \in A} t_{i}\right\rangle \geqslant 0$ for any subset A of Λ_{+}. The case in
which $J_{i j}$ is nonzero only for $\|i-j\|=1$ was essentially contained in the proof of an analogous theorem (Theorem 1) of Messager and MiracleSole ${ }^{(4)}$ for Ising ferromagnets.

Corollary 3.2. If $J_{i j}$ satisfies the conditions of Theorem 3.1, then

$$
\begin{align*}
& \text { (1) } \left.\left\langle s_{0} s_{j}\right\rangle \pm\right\rangle\left\langle s_{0} s_{\left(j_{1}+2 j_{2}, \ldots, j_{d}\right)}\right\rangle_{\infty}^{ \pm} \tag{1}\\
& \text {(2) }\left\langle s_{0} s_{j}\right\rangle \pm \pm \geqslant-\left\langle s_{0} s_{\left(j_{1}+1, j_{2}, \ldots, j_{d}\right)}\right\rangle_{\infty}^{ \pm}
\end{align*}
$$

for any j with $j_{1} \geqslant 0$, where

$$
\left\langle s_{0} s_{j}\right\rangle_{\infty}^{ \pm}=\lim _{\Lambda \uparrow Z^{d}}\left\langle s_{0} s_{j}\right\rangle_{A}
$$

with boundary conditions $\bar{s}_{j} \equiv+1$ or $\bar{s}_{j} \equiv-1$ for all $j \in \Lambda^{c}$ and the limit may be taken along any sequence Λ_{n} increasing to \mathbf{Z}^{d}.

Proof. Let $\rho_{j}=1 / 2\left(s_{j}+1\right)$. Then $\rho_{0} \rho_{j}$ is an increasing function in the sense used in the FKG inequalities. Since $4 \rho_{0} \rho_{j}=\left[s_{0} s_{j}+s_{0}+s_{j}+1\right]$ and s_{0} and s_{j} are also increasing, it follows that $\lim \left\langle s_{0} s_{j}\right\rangle_{A}$ exists along any sequence A_{n} increasing to \mathbf{Z}^{d}. Let A_{n} be as in Theorem 3.1 and let $\widetilde{\Lambda}_{n}$ be the reflection of Λ_{n} across the hyperplane $j_{1}=0$. Then

$$
\left\langle s_{0} s_{\phi(J)}\right\rangle_{A_{n}}=\left\langle s_{0} s_{\left(j_{1}+2, j_{2}, \ldots, j_{d}\right)}\right\rangle_{\tilde{\lambda}_{n}}
$$

Inequality (1) now follows by applying Theorem 3.1 and taking limits. The proof of (2) is similar.

Remark 3.2. We note that other axes and reflections may be used in Theorems 3.1 and 3.2 ; the crucial point is that H_{i} or K_{i} or both (as in the case of ferromagnetic interactions) must be nonnegative [see (3.9)].

ACKNOWLEDGMENT

One of us (W.-S. Y.) was partially supported during the course of this research by NFS grant DMS 8902123.

REFERENCES

1. R. L. Dobrushin, Phase diagram of the two-dimensional Ising antiferromagnet (computerassisted proof), Commun. Math. Phys. 102:89-103 (1985).
2. G. H. Hegerfeldt, Correlation inequalities for Ising ferromagnets with symmetries, Commun. Math. Phys. 57:259-266 (1977).
3. J. L. Lebowitz, GHS and other inequalities, Commun. Math. Phys. 35:87-92 (1974).
4. A. Messager and S. Miracle-Sole, Correlation functions and boundary conditions in the Ising ferromagnet, J. Stat. Phys. 17(4):245-262 (1977).
5. J. Percus, Correlation inequalities for Ising spin lattices, Commun. Math. Phys. 40:283-308 (1975).
6. R. Schrader, New correlation inequalities for the Ising model and $P(\phi)$ theories, Phys. Rev. B 15:2798 (1977).
7. G. S. Sylvester, Inequalities for continuous-spin Ising ferromagnets, J. Stat. Phys. 15:327-341 (1976).
8. J. L. Lebowitz, Number of phases in one component ferromagnets, in Lecture Notes in Physics, Vol. 80 (Springer, 1977).
9. R. B. Griffiths, Phase transitions, in: Statistical Mechanics and Quantum Field Theory (Gordon and Breach, New York, 1971).

[^0]: ${ }^{1}$ Department of Mathematics, California State University, Northridge, California 91330.
 ${ }^{2}$ Department of Mathematics, University of Colorado, Colorado Springs, Colorado 80933.

